

COMUNE DI DOLZAGO

1 n LUG. 2015

Fasc

PROT. N.º

COMUNE DI DOLZAGO

- Provincia di Lecco -

Variante al Piano Attuativo approvato con Delibera C.C. n. 55 del 19.12.2013

- Via Provinciale 30/32 -

Adottato con Delibera Consiglio Comunale

n°

in data

Pubblicato all'Albo Pretorio

dal

al

Approvato con Delibera Consiglio Comunale

n°

in data

II Sindaco

Il Segretario

II Tecnico

l Richiedenti

L'Amm. Strator Unice

Verifica Legge 10

COORDINAMENTO:

SEDE LEGALE:

22063 Cantù (CO) Via Vergani, 20 Cod. Fisc. 03435870377 P.IVA 01937330130

DIREZIONE TECNICA:

23847 Molteno (LC) Via Roma,1 Tel. 031-870345 Fax 031-870347 Indirizzo E-MAIL:edin.pi@5151.it TAVOLA N°:

18

DATA:

AGG. 09.07.2015

ITEC srl

ENGINEERING & CONSULTING

Sede legale & operativa di PD: Via Andorra, 28 35127 Camin (PD) Tel. 049.8700034 Fax. 049.7625209

Web: www.itecsrl.eu E-mail: info@itecsrl.eu

OGGETTO:

LEGGE 9 GENNAIO 1991, n.10 - DGR 22/12/2008, n.8/8745 - ALLEGATO "B" e s.m.i. Edificio ad uso commerciale sito in Via Provinciale 30/32 - Fabbricato "B" 23843 Dolzago (LC)

RELAZIONE TECNICA

COMMITTENTE:

TENINVEST SPA Viale Lombardia 7/9 - 23847 Molteno (LC)

CLIENTE:

TENINVEST SPA Viale Lombardia 7/9 - 23847 Molteno (LC)

ELABORATO:

ALLEGATO "B" - CALCOLO DISPERSIONI e VERIFICHE DI LEGGE INTERVENTO: "Ristrutturazione edificio e realizzazione nuovo impianto termico in edificio esistente"

PROGETTISTA:

VOLTAN Per.Ind. CHRISTIAN

TIMBRO & FIRMA:

RT.01


FORMATO:

FILE:

A4

150623_15-110_RT.dwg

0	06/2015		M.M	V.C.	Emissione relazione tecnica	
REV.	DATA	DISEGNATO	ELABORATO	APPROVATO	DESCRIZIONE	

LEGGE 9 gennaio 1991, n. 10 RELAZIONE TECNICA DGR 22 dicembre 2008, n. 8/8745 - ALLEGATO B

COMMITTENTE : TENINVEST SPA

EDIFICIO : Edifico ad uso commerciale

INDIRIZZO : Via Provinciale 30/32 - 23843 Dolzago (LC) - Fabbricato "B"

COMUNE : DOLZAGO

INTERVENTO : Ristrutturazione punto vendita e realizzazione nuovo impianto

termico

Software di calcolo : Edilclima - EC700 - versione 6

ITEC srl Via Andorra, 28 Padova

ALLEGATO B

RELAZIONE TECNICA DI CUI ALL'ARTICOLO 28 DELLA LEGGE 9 GENNAIO 1991, N. 10, ATTESTANTE LA RISPONDENZA ALLE PRESCRIZIONI IN MATERIA DI CONTENIMENTO DEL CONSUMO ENERGETICO DEGLI EDIFICI

1. INFOR	MAZIONI GENERALI	
Comune di	DOLZAGO	Provincia <i>LC</i>
Progetto per l	a realizzazione di (specificare il	l tipo di opere):
Ristrutturazi	ione punto vendita e realizz	azione nuovo impianto termico.
gli estremi de	I censimento al Nuovo Catasto	
Via Provincia	ale 30/32 - 23843 Dolzago ((LC) - Fabbricato "B"
Concessione e	edilizia n.	del
decreto del		o di edifici) in base alla categoria di cui all'articolo 3 del 26 agosto 1993, n. 412; per edifici costituiti da parti re le diverse categorie):
F- N	ifici adibiti ad attività commerc inuto, supermercati.	ciali e assimilabili: quali negozi, magazzini all'ingrosso e
Numero delle	unità immobiliari	
Committente	(i)	TENINVEST SPA
		Viale Lombardia 7/9 - 23847 Molteno (LC)
Progettista de	gli impianti termici	
		Per.Ind. Voltan Christian
		Albo: Periti Industriali Pr.: Venezia N.iscr.: 2042

2. FATTORI TIPOLOGICI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI)

Gli elementi tipologici forniti, al solo scopo di supportare la presente relazione tecnica, sono i seguenti:

- [X] Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali.
- [] Prospetti e sezioni degli edifici con evidenziazione dei sistemi di protezione solare.
- [] Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari.

3. PARAMETRI CLIMATICI DELLA LOCALITÀ		
Gradi giorno (della zona d'insediamento, determinati in base al DPR 412/93)	2493	GG
Temperatura minima invernale di progetto (dell'aria esterna secondo norma UNI 5364 e successivi aggiornamenti)	-6,0	°C
Temperatura massima estiva di progetto (dell'aria esterna secondo norma UNI 10349 e successivi aggiornamenti)	32,0	°C
Ampiezza massima estiva di progetto (dell'aria esterna secondo norma UNI 10349 e successivi aggiornamenti)	8,0	°C
Umidità relativa dell'aria di progetto per la climatizzazione estiva (secondo norma UNI 10339 e successivi aggiornamenti)	50,0	%
Irradianza solare massima estiva su superficie orizzontale (secondo norma UNI 10349 e successivi aggiornamenti): valore medio giornaliero	255,8	W/m ²

4. DATI TECNICI E COSTRUTTIVI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI) E DELLE RELATIVE STRUTTURE

Descrizione	(m ³)	S [m²]	S/V [1/m]	Su [m²]	θ _{int,i} [°C]	φ _{int,i} [%]	θ _{int,e} [°C]	Φ _{int,e} [%]
Zona 1	4212,46	2169,26	0,51	691,32	20,0	65,0	26,0	0,0
Edifico ad uso commerciale	4212,46	2169,26	0,51	691,32	20,0	65,0	26,0	0,0

- V Volume delle parti di edificio a temperatura controllata o climatizzate al lordo delle strutture che li delimitano
- S Superficie esterna che delimita il volume a temperatura controllata o climatizzato verso l'esterno o verso ambienti a temperatura non controllata
- S/V Rapporto di forma dell'edificio
- Su Superficie utile dell'edificio
- $\theta_{\text{int,i}}$ Valore di progetto della temperatura interna per la climatizzazione invernale o il riscaldamento
- φint,i Valore di progetto dell'umidità relativa interna per la climatizzazione invernale
- θ_{int,e} Valore di progetto della temperatura interna per la climatizzazione estiva o il raffrescamento
- φint,e Valore di progetto dell'umidità relativa interna per la climatizzazione estiva

5. DATI RELATIVI AGLI IMPIANTI

5.1 Impianti termici

a) Descrizione impianto

Tipologia

Impianto termico autonomo per il riscaldamento degli ambienti e la produzione di A.C.S.

Sistemi di generazione

Pompa di calore ad espansione diretta a volume di refrigerante variabile, ad alta efficienza.

Sistemi di termoregolazione

Termoregolazione mediante termostati ambiente ON/OFF agenti sulle unità interne.

Sistemi di contabilizzazione dell'energia termica

Non previsti

Sistemi di distribuzione del vettore termico

Distribuzione mediante tubazioni in rame preisolate termicamente

Sistemi di ventilazione forzata: tipologie

Recuperatore di calore ad alta efficienza

Sistemi di accumulo termico: tipologie

Non previsto

Sistemi di produzione e di distribuzione dell'acqua calda sanitaria

Produzione mediante pompa di calore aria-acqua

b) Specifiche dei generatori di energia

Zona	Zona 1	Quantità	1
Servizio	Riscaldamento	Fluido termovettore	Aria
Tipo di ge	neratore Pompa di calore	Combustibile	Energia elettrica
Marca - n	nodello HITACHI RAS 24 FSXNHE		
Potenza u	tile nominale Pn 77,50 kW		
	E o COPt nel caso di pompe di calore aria-a		
Temperat	ura aria interna	-	20 °C
Temperat	ura aria esterna		-6 °C
	progetto del rendimento termico utile, COP, le relative condizioni di cui ai punti preced	the state of the s	38
Zona	Zona 1	Quantità	1
Servizio	Acqua calda sanitaria	Fluido termovettore	Acqua
Tipo di ge	neratore Pompa di calore	Combustibile	Energia elettrica

Marca – modello	Ariston Nuos	80		
Potenza utile nomina	ale Pn	0,93 kW		
COP o GUE o COPt no	el caso di pompe	e di calore aria-acqua all	e seguenti condizio	ni:
Temperatura acqua	di mandata all'ut	tenza	55	°C
Temperatura acqua	di ritorno dall'ute	enza		°C
Temperatura aria est	terna		20	°C
Valore di progetto de COPt, con le relative		rmico utile, COP, GUE, i ai punti precedenti	3,40	-

Per gli impianti termici con o senza produzione di acqua calda sanitaria, che utilizzano, in tutto o in parte, macchine diverse dai generatori di calore convenzionali, quali ad esempio: macchine frigorifere, pompe di calore, gruppi di cogenerazione di energia termica ed elettrica, le prestazioni delle macchine diverse dai generatori di calore sono fornite indicando le caratteristiche normalmente utilizzate per le specifiche apparecchiature, applicando, ove esistenti, le vigenti norme tecniche.

c) Specifiche relative ai sistemi di regolazione dell'impianto termico

Tipo di conduzione prevista	[X] continua con attenuazione notturna	[] intermittente
Altro	*	

Dispositivi per la regolazione automatica della temperatura ambiente nei singoli locali o nelle singole zone, ciascuna avente caratteristiche di uso ed esposizioni uniformi.

Numero di apparecch		
3		

Potenza elettrica complessivamente assorbita	0,05	KW

e) Terminali di erogazione dell'energia termica

Tipo di terminali	Numero di apparecchi	Potenza termica nominale [W]	Potenza elettrica nominale [W]	
Cassette a 4 vie	10	77500	600	

g) Sistemi di trattamento dell'acqua (tipo di trattamento)

Trattamento mediante sistema di dosaggio di prodotti filmanti

h) Specifiche dell'isolamento termico della rete di distribuzione

Descrizione della rete	Tipologia di isolante	λ _{is} [W/mK]	Sp _{is} [mm]
Climatizzazione estiva/invernale	Materiali espansi organici a cella chiusa	0,040	13

λ_{is} Conduttività termica del materiale isolante

Spis Spessore del materiale isolante

6. PRINCIPALI RISULTATI DEI CALCOLI

Zona 1: Zona 1

a) Involucro edilizio e ricambi d'aria

Identificazione, calcolo e attribuzione dei ponti termici ai componenti opachi dell'involucro edilizio Vedi alle1gati

Caratteristiche termiche dei componenti opachi dell'involucro edilizio (limiti aumentati del 30%)

Cod.	Descrizione	Trasmittanza media [W/m²K]	Valore limite [W/m²K]	Verifica
M1	Parete esterna negozio	0,389	0,442	Positiva
M2	Parete esterna servizi	0,435	0,442	Positiva
P1	Pavimento su vespaio (igloo)	0,388	0,429	Positiva
S 1	Copertura	0,407	*	*

^(*) Struttura esistente, non soggetta alle verifiche di legge secondo il DPR n.59/09.

Caratteristiche termiche dei divisori opachi e delle strutture dei locali non climatizzati

Cod.	Descrizione	Trasmittanza U [W/m²K]	Trasmittanza media [W/m²K]
------	-------------	---------------------------	-------------------------------

Caratteristiche igrometriche dei componenti opachi dell'involucro edilizio

Cod.	Descrizione	Condensa superficiale	Condensa interstiziale
M1	Parete esterna negozio	Positiva	Positiva
M2	Parete esterna servizi	Positiva	Positiva
P1	Pavimento su vespaio (igloo)	Positiva	Positiva
S1	Copertura	*	*

^(*) Struttura esistente, non soggetta alle verifiche di legge secondo il DPR n.59/09.

Caratteristiche di massa superficiale Ms e trasmittanza periodica YIE dei componenti opachi

Cod.	Descrizione	Ms [kg/m²]	YIE [W/m²K]
M1	Parete esterna negozio	483	0,068
M2	Parete esterna servizi	584	0,050
S 1	Copertura	132	0,253

Trasmittanza termica dei componenti finestrati Uw (comprensivo di infisso)

Cod.	Descrizione	Trasmittanza U _w [W/m²K]	Valore limite [W/m²K]	Verifica
W1	1010x415	1,206	2,200	Positiva
W2	840x415	1,228	2,200	Positiva
W3	150x150	1,454	2,200	Positiva
W4	100×150	1,539	2,200	Positiva
W5	160x250	1,506	2,200	Positiva
W6	120x220	1,619	2,200	Positiva

Trasmittanza termica dei componenti finestrati divisori o appartenenti a locali non climatizzati

		Trasmittanza infisso
Cod.	Descrizione	Uw
		[W/m²K]

Valutazione dell'efficacia dei sistemi schermanti delle superfici vetrate

Al fine di limitare i fabbisogni energetici per la climatizzazione estiva e di contenere la temperatura interna degli ambienti, dovranno essere utilizzati sistemi schermanti interni delle superfici vetrate per ridurre l'apporto di calore per irraggiamento solare.

Attenuazione dei ponti termici (provvedimenti e calcoli)

Il costruttore, in fase di ristrutturazione, dovrà adottare tutte le misure necessarie per ridurre al minimo i ponti termici dell'edificio

Numero di ricambi d'aria (media nelle 24 ore) – specificare per le diverse zone

N.	Descrizione	Valore di progetto [vol/h]	Valore medio 24 ore [vol/h]
1	Negozio	1,00	1,00
2	Servizi ciechi	8,00	8,00
3	Servizi finestrati	2,00	2,00

Portata d'aria di ricambio (solo nei casi di ventilazione meccanica controllata)

Q.tà	Portata G [m³/h]	Portata G _R [m ³ /h]	ητ [%]
1	3200,0	3200,0	0,9

G Portata d'aria di ricambio per ventilazione meccanica controllata

G_R Portata dell'aria circolante attraverso apparecchiature di recupero del calore disperso

 η_T Rendimento termico delle apparecchiature di recupero del calore disperso

b) Valore dei rendimenti medi stagionali di progetto

Rendimento di generazione	195,3	%
Rendimento di regolazione	46,3	%
Rendimento di distribuzione	99,0	%
Rendimento di emissione	97,7	%
Efficienza globale media stagionale	197,3	%
Efficienza globale media stagionale minima	80,7	%
Verifica (positiva / negativa)	Positiva	
Valore di progetto COP, GUE, COPt	8,4	%
Valore minimo imposto dal regolamento	4,0	%
Verifica (positiva / negativa)	Positiva	

c) Indice di prestazione energetica per la climatizzazione invernale o il riscaldamento $(EP_{\rm H})$

Valore di progetto	2,88	kWh/m³
Confronto con il valore limite riportato all'allegato A della DGR n. 8/8745	17,82	kWh/m³
Verifica (positiva / negativa)	Positiva	
Fabbisogno di Energia elettrica	5580	kWhe

d) Indice di prestazione energetica normalizzato per la climatizzazione invernale o il riscaldamento

	Valore di progetto (trasformazione del corrispondente dato calcolato al punto c)		kWh/m³GG
e)	Indici di prestazione energetica per la produzione di	acqua calda sani	itaria
-,	Fabbisogno di Energia elettrica		kWhe
h)	Indice di prestazione energetica per la climatizzazion	ne estiva o il raff	rescamento (ETc)
	Valore di progetto	11,82	kWh/m³

7. ELEMENTI SPECIFICI CHE MOTIVANO EVENTUALI DEROGHE A NORME FISSATE DALLA NORMATIVA VIGENTE

Nei casi in cui la normativa vigente consente di derogare ad obblighi generalmente validi, in questa sezione vanno adeguatamente illustrati i motivi che giustificano la deroga nel caso specifico.

8. VALUTAZIONI SPECIFICHE PER L'UTILIZZO DELLE FONTI DI ENERGIA RINNOVABILE

Indicare il rispetto delle disposizioni di cui al punto 6.5 della DGR n. 8/8745, evidenziando le tecnologie che, in sede di progetto, sono state valutate ai fini del soddisfacimento del fabbisogno energetico mediante ricorso a fonti rinnovabili di energia o assimilate.

In caso di mancato rispetto delle disposizioni di cui al punto 6.5 della DGR n. 8/8745, documentare dettagliatamente tale omissione.

9.	DOCUMENTAZIONE ALLEGATA
[X]	Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali. N Rif.: <i>Vedi allegati</i>
[]	Prospetti e sezioni degli edifici con evidenziazione di eventuali sistemi di protezione solare (completi di documentazione relativa alla marcatura CE). N Rif.:
[]	Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari. N Rif.:
[]	Schemi funzionali degli impianti contenenti gli elementi di cui all'analoga voce del paragrafo "Dati relativi agli impianti". N Rif.:
[X]	Tabelle con indicazione delle caratteristiche termiche, termoigrometriche e massa efficace dei componenti opachi dell'involucro edilizio. N. Rif.: Vedi allegati
[X]	Tabelle con indicazione delle caratteristiche termiche dei componenti finestrati dell'involucro edilizio e loro permeabilità all'aria. N. Rif.: Vedi allegati
[]	Tabelle indicanti i provvedimenti ed i calcoli per l'attenuazione dei ponti termici. N Rif.:
[]	Altri allegati. N. Rif.:
	coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti:
[X]	Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali.
[X]	Calcolo energia utile invernale $Q_{h,nd}$ secondo UNI/TS 11300-1.
[X]	Calcolo energia utile estiva Q _{C,nd} secondo UNI/TS 11300-1.
[X]	Calcolo dei coefficienti di dispersione termica H_T - H_U - H_G - H_A - H_V .
[X]	Calcolo mensile delle perdite ($Q_{h,ht}$), degli apporti solari (Q_{sol}) e degli apporti interni (Q_{int}) secondo UNI/TS 11300-1.
[X]	Calcolo degli scambi termici ordinati per componente.
[X]	Calcolo del fabbisogno di energia primaria per il riscaldamento secondo UNI/TS 11300-2 e UNI/TS 11300-4.
[X]	Calcolo del fabbisogno di energia primaria per la produzione di acqua calda sanitaria secondo UNI/TS 11300-2 e UNI/TS 11300-4.

Il progettista

O. DICHIAR	AZIONE DI R	ISPONDENZA		
Il sottoscritto	Per.Ind.	Christian	Voltan	
	TITOLO	NOME	COGNOME	
iscritto a	Periti Indu	striali	Venezia	2042
	ALBO - ORDINE	O COLLEGIO DI APPARTENENZA	PROV.	N. ISCRIZIONE
ssendo a conos	scenza delle sa	nzioni previste dalla normativa	nazionale e regionale	
		DICHIARA		
otto la propria	responsabilità	che:		
del 22 dice	mbre 2008;	ere di cui sopra è rispondente		
	nformazioni co rati progettuali	ntenuti nella relazione tecnica	sono conformi a quanto	contenuto o desun
Data, <u>23/0</u>	6/2015			

TIMBRO & FIRMA

Relazione tecnica di calcolo prestazione energetica del sistema edificio-impianto

EDIFICIO Edifico ad uso commerciale

INDIRIZZO Via Provinciale 30/32 - 23843 Dolzago (LC) - Fabbricato

"B"

COMMITTENTE TENINVEST SPA

INDIRIZZO Viale Lombardia 7/9 - 23847 Molteno (LC)

COMUNE **DOLZAGO**

Software di calcolo EDILCLIMA - EC700 versione 6.0.1

ITEC srl Via Andorra, 28 Padova

DATI CLIMATICI DELLA LOCALITÀ

Caratteristiche geografiche

Località **DOLZAGO**

Provincia Lecco

Altitudine s.l.m. 298 m

Latitudine nord 45° 46' Longitudine est 9° 20'

Gradi giorno 2493
Zona climatica E

Località di riferimento

per la temperatura COMO
per l'irradiazione I località: COMO

II località: LECCO

per il vento COMO

Caratteristiche del vento

Regione di vento:

Direzione prevalente

Distanza dal mare > 40 km
Velocità media del vento 0,9 m/s
Velocità massima del vento 1,8 m/s

Dati invernali

Temperatura esterna di progetto -6,0 °C

Stagione di riscaldamento convenzionale dal 15 ottobre al 15 aprile

Dati estivi

Temperatura esterna bulbo asciutto

Temperatura esterna bulbo umido

Umidità relativa

Escursione termica giornaliera

32,0 °C

23,6 °C

50,0 %

Temperature esterne medie mensili

Descrizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Temperatura	°C	2,4	4,5	8,3	12,2	16,2	20,6	23,1	22,6	19,1	13,2	7,9	3,9

Irradiazione solare media mensile

Esposizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Nord	MJ/m²	1,7	2,4	3,6	5,3	7,2	8,9	8,8	6,1	4,1	2,9	1,8	1,5
Nord-Est	MJ/m ²	1,8	2,9	5,0	7,7	9,6	11,2	11,8	9,1	6,1	3,8	2,0	1,6
Est	MJ/m²	3,6	5,1	7,9	10,6	11,8	13,1	14,5	12,1	9,3	6,8	3,8	3,2
Sud-Est	MJ/m²	6,4	7,5	9,8	11,3	11,0	11,5	13,0	12,2	10,8	9,7	6,1	5,8
Sud	MJ/m²	8,1	8,8	10,5	10,2	9,1	9,2	10,3	10,5	10,7	11,2	7,7	7,3
Sud-Ovest	MJ/m ²	6,4	7,5	9,8	11,3	11,0	11,5	13,0	12,2	10,8	9,7	6,1	5,8
Ovest	MJ/m²	3,6	5,1	7,9	10,6	11,8	13,1	14,5	12,1	9,3	6,8	3,8	3,2
Nord-Ovest	MJ/m²	1,8	2,9	5,0	7,7	9,6	11,2	11,8	9,1	6,1	3,8	2,0	1,6
Orizzontale	MJ/m²	4,5	6,7	10,9	15,5	17,9	20,4	22,1	17,9	12,9	8,9	4,8	3,9

Irradianza sul piano orizzontale nel mese di massima insolazione:

256 W/m²

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: Parete esterna negozio

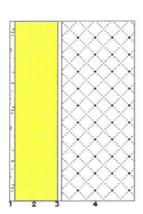
0,275 W/m²K Trasmittanza termica

342 mm Spessore

Temperatura esterna °C -6,0

(calcolo potenza invernale)

833,33 10⁻¹²kg/sm²Pa Permeanza 3


Massa superficiale 483 kg/m² (con intonaci)

Massa superficiale 472 kg/m² (senza intonaci)

0,068 W/m2K Trasmittanza periodica

0,246 Fattore attenuazione

-8,7 h Sfasamento onda termica

Codice: M1

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	-	-	-
1	Cartongesso in lastre	12,00	0,250	-	900	1,00	10
2	Fibre minerali feldspatiche - Pannello rigido	120,00	0,038	-	100	0,84	1
3	Intercapedine debolmente ventilata Av=600 mm²/m	10,00	-	-	-	-	_
4	C.I.s. armato (1% acciaio)	200,00	2,300	-	2300	1,00	-
-	Resistenza superficiale esterna	-	-	0,083	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuale maggiorazione	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

Descrizione della struttura: Parete esterna negozio

Codice: M1

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento	20,0	°C
Umidità relativa interna costante, pari a	65	%

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$)		Positiva	
Mese critico		gennaio	
Fattore di temperatura del mese critico	$f_{\text{RSI},\text{max}}$	0,812	
Fattore di temperatura del componente	f_{RSI}	0,933	
Umidità relativa superficiale accettabile		80	%

Verifica del rischio di condensa interstiziale

Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

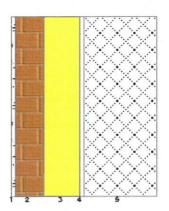
Descrizione della struttura: Parete esterna servizi

0,311 W/m2K Trasmittanza termica

400 mm Spessore

Temperatura esterna -6,0 °C (calcolo potenza invernale)

263,15 10⁻¹²kg/sm²Pa Permeanza


Massa superficiale 584 kg/m² (con intonaci)

Massa superficiale 566 kg/m² (senza intonaci)

0,050 W/m²K Trasmittanza periodica

Fattore attenuazione 0,163 -Sfasamento onda termica

-11,7 h

Codice: M2

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	15	-	0,130	-	-	(+)
1	Intonaco di cemento e sabbia	10,00	1,000	-	1800	1,00	10
2	Muratura in laterizio pareti esterne (um. 1.5%)	80,00	0,540	-	1200	0,84	7
3	Fibre minerali feldspatiche - Pannello rigido	100,00	0,038	-	100	0,84	1
4	Intercapedine debolmente ventilata Av=600 mm²/m	10,00	-	-	-	-	-
5	C.I.s. armato (1% acciaio)	200,00	2,300	-	2300	1,00	-
-	Resistenza superficiale esterna	-	-	0,083	-	-	(=)

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuale maggiorazione	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

Descrizione della struttura: Parete esterna servizi

Codice: M2

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Umidità relativa interna costante, pari a 65 %

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$)		Positiva	
Mese critico		gennaio	
Fattore di temperatura del mese critico	$f_{RSI,max}$	0,812	
Fattore di temperatura del componente	f_{RSI}	0,924	
Umidità relativa superficiale accettabile		80	%

Verifica del rischio di condensa interstiziale

Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

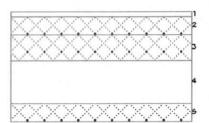
CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: Pavimento su vespaio (igloo)

Trasmittanza termica 1,626 W/m²K
Trasmittanza controterra 0,388 W/m²K

Spessore 305 mm

Temperatura esterna (calcolo potenza invernale) -6,0 °C


Permeanza **1,254** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 355 kg/m²

Massa superficiale (senza intonaci) 355 kg/m²

Trasmittanza periodica 0,646 W/m²K

Fattore attenuazione 1,664 Sfasamento onda termica -6,7 h

Codice: P1

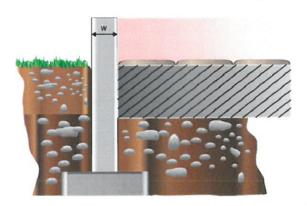
Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,170	-	-	-
1	Piastrelle in granito	15,00	4,100	0,004	3000	0,84	10000
2	Sottofondo di cemento magro	50,00	0,900	0,056	1800	0,88	30
3	C.I.s. di sabbia e ghiaia pareti esterne	70,00	1,310	0,053	2000	0,88	100
4	Intercapedine non ventilata Av<500 mm²/m	120,00	0,543	0,221	-	-	-
5	Sottofondo di cemento magro	50,00	0,700	0,071	1600	0,88	20
-	Resistenza superficiale esterna	1.5	-	0,040	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuale maggiorazione	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m ³
C.T.	Capacità termica specifica	kJ/kgK
D V	Fattore di registenza alla diffusione del vanore in cano acciutto	

CALCOLO DELLA TRASMITTANZA CONTROTERRA secondo UNI EN ISO 13370


Pavimento appoggiato su terreno:

Pavimento su vespaio (igloo)

Area del pavimento 695,00 m²
Perimetro disperdente del pavimento 151,00 m

Spessore pareti perimetrali esterne 350 mm

Conduttività termica del terreno 2,00 W/mK

Codice: P1

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

Descrizione della struttura: Pavimento su vespaio (igloo)

Codice: P1

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperatura esterna fissa, pari a	12,8	°C	(media annuale)
Umidità relativa esterna fissa, pari a	100,0	%	
Temperatura interna nel periodo di riscaldamento	20,0	°C	
Umidità relativa interna costante, pari a	65	%	

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$)		Positiva	
Mese critico		ottobre	
Fattore di temperatura del mese critico	$f_{RSI,max}$	0,538	
Fattore di temperatura del componente	f_{RSI}	0,640	
Umidità relativa superficiale accettabile		80	%

Verifica del rischio di condensa interstiziale

Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

8,457 10⁻¹²kg/sm²Pa

Descrizione della struttura: Copertura

Codice: 51

Trasmittanza term	ica 0,407	W/m ² K
ITUSITICCUITZU CCITT	icu	100000

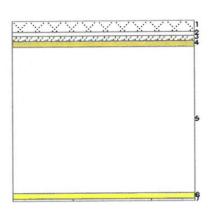
Spessore 982 mm

Temperatura esterna (calcolo potenza invernale) -6,0 °C

Massa superficiale 132 kg/m²

(con intonaci)

Massa superficiale


132 kg/m²

kg/m²

Massa superficiale (senza intonaci) 124 kg/m²

Trasmittanza periodica 0,253 W/m²K

Fattore attenuazione 0,622 Sfasamento onda termica -5,6 h

Stratigrafia:

Permeanza

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna		-	0,083	-	-	-
1	C.I.s. in genere	60,00	0,930	-	1800	1,00	15
2	Intercapedine debolmente ventilata Av=600 mm²/m	20,00	-	-	-	-	-
3	Legno di abete flusso perpend. alle fibre	30,00	0,120	-	450	2,70	643
4	Poliuretano espanso in continuo in lastre	30,00	0,032	-	40	1,30	140
5	Intercapedine non ventilata Av<500 mm²/m	800,00	5,000	-	-	-	-
6	Fibre minerali feldspatiche - Feltro resinato	30,00	0,045	= 1	30	0,84	1
7	Cartongesso in lastre	12,00	0,210	-	700	1,00	10
-	Resistenza superficiale interna	-	-	0,100	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuale maggiorazione	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

Descrizione della struttura: Copertura

Codice: S1

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [x] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento	20,0	°C
Umidità relativa interna costante, pari a	65	%

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$)		Positiva	
Mese critico		gennaio	
Fattore di temperatura del mese critico	$f_{\text{RSI},\text{max}}$	0,812	
Fattore di temperatura del componente	f_{RSI}	0,903	
Umidità relativa superficiale accettabile		80	%

Verifica del rischio di condensa interstiziale

Verifica condensa interstiziale		Negativa	
Quantità massima di condensa durante l'anno	M_{a}	164	g/m²
Quantità di condensa ammissibile	M_{lim}	24	g/m²
Verifica di condensa ammissibile ($M_a \leq M_{lim}$)		Negativa	
Mese con massima condensa accumulata		gennaio	
L'evaporazione a fine stagione è		Completa	

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: 1010x415

Codice: W1

Caratteristiche del serramento

Singolo Tipologia di serramento

Classe di permeabilità Senza classificazione

1,206 W/m²K Trasmittanza termica U_w 1,086 W/m2K Trasmittanza solo vetro U_{a}

Dati per il calcolo degli apporti solari

Emissività 3 0,837 -Fattore tendaggi (invernale) f_{c inv} 1,00 -Fattore tendaggi (estivo) $f_{c est}$ 1,00 -

0,850 -Fattore di trasmittanza solare $g_{ql,n}$

Caratteristiche delle chiusure oscuranti

0,00 m²K/W Resistenza termica chiusure fshut 0,6

Dimensioni del serramento

1010,0 cm Larghezza 415,0 cm Altezza

Caratteristiche del telaio

Trasmittanza termica del telaio	U_f	2,20	W/m ² K
K distanziale	K_{d}	0,08	W/mK
Area totale	A_{w}	41,915	m^2
Area vetro	A_g	39,978	m^2
Area telaio	A_f	1,937	m^2
Fattore di forma	F_f	0,95	-
Perimetro vetro	L_g	35,960	m
Perimetro telaio	L_{f}	28,500	m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	4,0	1,00	0,004
Intercapedine	-	-	0,700
Secondo vetro	4,0	1,00	0,004
Resistenza superficiale esterna	-	-	0,083

Legenda simboli

Spessore S

Conduttività termica λ

R Resistenza termica mm W/mK m2K/W

Caratteristiche del modulo

Trasmittanza termica del modulo

U **1,206** W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: 840x415

Codice: W2

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica 1,228 W/m²K U_g 1,086 W/m2K Trasmittanza solo vetro

Dati per il calcolo degli apporti solari

Emissività 0,837 -Fattore tendaggi (invernale) 1,00 f_{c inv} Fattore tendaggi (estivo) 1,00 $f_{c est}$

Fattore di trasmittanza solare 0,850 $g_{gl,n}$

Resistenza termica chiusure 0,00 m²K/W

f shut 0,6 -

Dimensioni del serramento

Larghezza 1010,0 cm Altezza 415,0 cm

Caratteristiche del telaio

2,20 W/m²K Trasmittanza termica del telaio U_{f} 0,08 W/mK K distanziale K_d 41,915 m² Area totale A_w 39,736 m² Area vetro 2,179 m² Area telaio A_f Fattore di forma F_f 0,95 -Perimetro vetro 43,900 m Perimetro telaio 28,500

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	1-	-	0,130
Primo vetro	4,0	1,00	0,004
Intercapedine	-	-	0,700
Secondo vetro	4,0	1,00	0,004
Resistenza superficiale esterna	-	-	0,083

Legenda simboli

S Spessore

λ Conduttività termica

R Resistenza termica W/mK

mm

m2K/W

Caratteristiche del modulo

Trasmittanza termica del modulo

U 1,228 W/m²K

0

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: 150x150

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica Uw 1,454 W/m²K 1,086 W/m²K Trasmittanza solo vetro U_g

Dati per il calcolo degli apporti solari

Emissività 0,837 -Fattore tendaggi (invernale) 1,00 f_{c inv} Fattore tendaggi (estivo) 1,00 f_{c est} Fattore di trasmittanza solare 0,850 $g_{gl,n}$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure 0,00 m²K/W

f shut 0,6 -

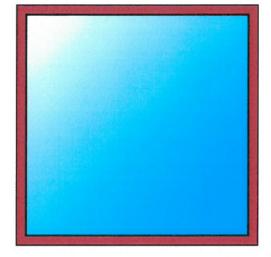
Dimensioni del serramento

Larghezza 150,0 cm Altezza 150,0 cm

Trasmittanza termica del telaio 2,20 W/m²K U_f K distanziale 0,08 W/mK K_d Area totale 2,250 m² A_{w} Area vetro 1,904 m² Area telaio 0,346 m² A_f Fattore di forma 0,85 - F_f Perimetro vetro 5,520 m Perimetro telaio 6,000

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	4,0	1,00	0,004
Intercapedine	-	-	0,700
Secondo vetro	4,0	1,00	0,004
Resistenza superficiale esterna	-	-	0,083


Legenda simboli

S Spessore

λ Conduttività termica

R Resistenza termica mm

W/mK

Codice: W3

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,454 W/m²K

0

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: 100x150

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w 1,539 W/m²K Trasmittanza solo vetro U_a 1,086 W/m²K

Dati per il calcolo degli apporti solari

Emissività ϵ 0,837 - Fattore tendaggi (invernale) $f_{c \text{ inv}}$ 1,00 - Fattore tendaggi (estivo) $f_{c \text{ est}}$ 1,00 - Fattore di trasmittanza solare $g_{gl,n}$ 0,850 -

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure 0,00 m²K/W

f shut **0,6** -

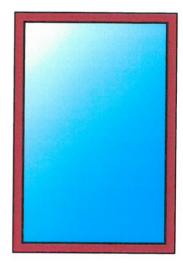
Dimensioni del serramento

Larghezza 100,0 cm Altezza 150,0 cm

Trasmittanza termica del telaio U_{f} 2,20 W/m²K K distanziale K_d 0,08 W/mK Area totale m^2 1,500 A_w Area vetro 1,214 m² A_q Area telaio 0,286 m² A_f Fattore di forma 0,81 Perimetro vetro 4,520 m Perimetro telaio 5,000 m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	1-71	-	0,130
Primo vetro	4,0	1,00	0,004
Intercapedine	-	-	0,700
Secondo vetro	4,0	1,00	0,004
Resistenza superficiale esterna	-	-	0,083


Legenda simboli

s Spessore

λ Conduttività termica

R Resistenza termica

mm W/mK m²K/W

Codice: W4

Caratteristiche del modulo

Trasmittanza termica del modulo

U **1,539** W/m²K

0

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: 160x250

Codice: W5

Caratteristiche	del	serramento
Caracteristiche	uei	serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w 1,506 W/m^2K Trasmittanza solo vetro U_g 1,086 W/m^2K

Dati per il calcolo degli apporti solari

Emissività ϵ 0,837 - Fattore tendaggi (invernale) $f_{c \text{ inv}}$ 1,00 - Fattore tendaggi (estivo) $f_{c \text{ est}}$ 1,00 - Fattore di trasmittanza solare $g_{gl,n}$ 0,850 -

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure $0,00 \text{ m}^2\text{K/W}$ f shut 0,6 -

Dimensioni del serramento

 Larghezza
 160,0 cm

 Altezza
 250,0 cm

Caratteristiche del telaio

Trasmittanza termica del telaio	U_f	2,20	W/m ² K
K distanziale	K_d	0,08	W/mK
Area totale	A_{w}	4,000	m ²
Area vetro	A_q	3,380	m ²
Area telaio	A_f	0,620	m^2
Fattore di forma	F_f	0,84	: -
Perimetro vetro	La	12,360	m
Perimetro telaio	L_f	8,200	m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	1,00 - 1,00	R 0,130 0,004 0,700 0,004
Resistenza superficiale interna	-		
Primo vetro	4,0		
Intercapedine	-		
Secondo vetro	4,0		
Resistenza superficiale esterna	-	-	0,083

Legenda simboli

s Spessore

λ Conduttività termica

R Resistenza termica

mm W/mK m²K/W

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,506 W/m²K

0

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: 120x220

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w 1,619 W/m²K Trasmittanza solo vetro U_q 1,086 W/m²K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{1,00} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,850} \hspace{0.2cm} -$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure 0,00 m²K/W

f shut **0,6** -

Dimensioni del serramento

Larghezza 120,0 cm Altezza 220,0 cm

Caratteristiche del telaio

2,20 W/m²K Trasmittanza termica del telaio U_f 0,08 W/mK K distanziale K_d 2,640 m² A_{w} Area totale 2,122 m² Area vetro A_{a} 0,518 m² Area telaio Af Fattore di forma F_f 0,80 -Perimetro vetro 10,360 m La 6,800 Perimetro telaio

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R	
Resistenza superficiale interna	-	- 1,00 - 1,00	0,130 0,004 0,700 0,004 0,083	
Primo vetro	4,0			
Intercapedine	- 1			
Secondo vetro	4,0			
Resistenza superficiale esterna	-	_		

Legenda simboli

s Spessore

λ Conduttività termica

R Resistenza termica

mm W/mK

m²K/W

Codice: W6

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,619 W/m²K

FABBISOGNO DI POTENZA TERMICA INVERNALE secondo UNI EN 12831

Dati climatici della località:

Località	DOLZAGO		
Provincia	Lecco		
Altitudine s.l.m.		298	m
Gradi giorno		2493	
Zona climatica		E	
Temperatura esterna di progetto		-6,0	°C

Dati geometrici dell'intero edificio:

		2
Superficie in pianta netta	691,32	m ²
Superficie esterna lorda	2169,26	m ²
Volume netto	3075,27	m^3
Volume lordo	4212,46	m^3
Rapporto S/V	0,51	m ⁻¹

Opzioni di calcolo:

Metodologia di calcolo **Vicini presenti**Coefficiente di sicurezza adottato **1,20** -

Coefficienti di esposizione solare:

Nord: 1,20

Nord-Ovest: 1,15 Nord-Est: 1,20

Ovest: 1,10 Est: 1,15

Sud-Ovest: 1,05 Sud-Est: 1,10

Sud: 1,00

RIASSUNTO DISPERSIONI DEI LOCALI

Opzioni di calcolo:

Metodologia di calcolo

Vicini presenti

Coefficiente di sicurezza adottato

1,20 -

Zona 1 - Zona 1 fabbisogno di potenza dei locali

Loc	Descrizione	[°C]	n [1/h]	Φ _{tr} [W]	Φ _{ve} [W]	Φ _{rh} [W]	Φ _{hl} [W]	Φ _{hl sic} [W]
1	NEGOZIO	20,0	0,95	26297	2478	0	28775	34530
2	SOGLIATOIO+WC CIECO	20,0	8,00	167	154	0	321	385
3	SOGLIATOIO+WC FINESTRATO	20,0	2,00	524	384	0	908	1090
4	WC DIS.	20,0	8,00	396	80	0	477	572
5	ANTIBAGNO	20,0	0,50	340	67	0	406	488

Totale: 27724 3163 0 30887 37065

Totale Edifico: 27724 3163 0 30887 37065

Legenda simboli

θi Temperatura interna del locale

n Ricambio d'aria del locale

Φ_{tr} Potenza dispersa per trasmissione

Φ_{ve} Potenza dispersa per ventilazione

 $\Phi_{\text{rh}} \hspace{1cm} \text{Potenza dispersa per intermittenza}$

Φ_{hl} Potenza totale dispersa

 $\Phi_{\text{hI sic}}$ Potenza totale moltiplicata per il coefficiente di sicurezza

RIASSUNTO DISPERSIONI DELLE ZONE

Opzioni di calcolo:

Metodologia di calcolo

Vicini presenti

Coefficiente di sicurezza adottato

1,20 -

Dati geometrici delle zone termiche:

Zona	Descrizione	V [m³]	V _{netto} [m³]	S _u [m ²]	S _{lorda} [m²]	S [m²]	s/v [-]
1	Zona 1	4212,46	3075,27	691,32	735,53	2169,26	0,51

Fabbisogno di potenza delle zone termiche

Zona	Descrizione	Φ _{tr} [W]	Φ _{ve} [W]	Φ _{rh} [W]	Ф _{hl} [W]	Φ _{hI sic} [W]
1	Zona 1	27724	3163	0	30887	37065

Totale: 27724 3163 0 30887 37065

Legenda simboli

 $\Phi_{hl \; sic}$

Volume lordo V_{netto} Volume netto S_u Superficie in pianta netta Superficie in pianta lorda Slorda S Superficie esterna lorda (senza strutture di tipo N) S/V Fattore di forma Φ_{tr} Potenza dispersa per trasmissione Φ_{ve} Potenza dispersa per ventilazione Potenza dispersa per intermittenza Φ_{rh} Φ_{hl} Potenza totale dispersa

Potenza totale moltiplicata per il coefficiente di sicurezza

FABBISOGNO DI ENERGIA UTILE INVERNALE secondo UNI EN ISO 13790 e UNI TS 11300-1

Dati climatici della località:

Località **DOLZAGO**

Provincia Lecco

Altitudine s.l.m. 298 m
Gradi giorno 2493
Zona climatica E

Temperatura esterna di progetto -6,0 °C

Irradiazione solare giornaliera media mensile:

Esposizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Nord	MJ/m²	1,7	2,4	3,6	5,3	7,2	8,9	8,8	6,1	4,1	2,9	1,8	1,5
Nord-Est	MJ/m²	1,8	2,9	5,0	7,7	9,6	11,2	11,8	9,1	6,1	3,8	2,0	1,6
Est	MJ/m ²	3,6	5,1	7,9	10,6	11,8	13,1	14,5	12,1	9,3	6,8	3,8	3,2
Sud-Est	MJ/m²	6,4	7,5	9,8	11,3	11,0	11,5	13,0	12,2	10,8	9,7	6,1	5,8
Sud	MJ/m²	8,1	8,8	10,5	10,2	9,1	9,2	10,3	10,5	10,7	11,2	7,7	7,3
Sud-Ovest	MJ/m²	6,4	7,5	9,8	11,3	11,0	11,5	13,0	12,2	10,8	9,7	6,1	5,8
Ovest	MJ/m²	3,6	5,1	7,9	10,6	11,8	13,1	14,5	12,1	9,3	6,8	3,8	3,2
Nord-Ovest	MJ/m²	1,8	2,9	5,0	7,7	9,6	11,2	11,8	9,1	6,1	3,8	2,0	1,6
Orizzontale	MJ/m²	4,5	6,7	10,9	15,5	17,9	20,4	22,1	17,9	12,9	8,9	4,8	3,9

Zona 1 : Zona 1

Temperature esterne medie e numero di giorni nella stagione considerata:

Descrizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Temperatura	°C	2,4	4,5	8,3	11,3	-	-	-	-	-	11,8	7,9	3,9
N° giorni	-	31	28	31	15	-	-	-	-	-	17	30	31

Opzioni di calcolo:

Metodologia di calcolo Vicini presenti

Stagione di calcolo Convenzionale dal 15 ottobre al 15 aprile

Durata della stagione 183 giorni

Dati geometrici:

691,32	m^2
2169,26	m^2
3075,27	m^3
4212,46	m^3
0,51	m ⁻¹
	691,32 2169,26 3075,27 4212,46 0,51

FABBISOGNO DI ENERGIA UTILE STAGIONE INVERNALE Sommario perdite e apporti

Zona 1 : Zona 1

Categoria DPR 412/93 E.5 Superficie esterna 2169,26 m² Superficie utile 691,32 m² Volume lordo 4212,46 m^3 Volume netto m^3 3075,27 Rapporto S/V 0,51 m⁻¹

Temperatura interna 20,0 °C Capacità termica specifica 165 kJ/m 2 K Apporti interni 8,00 W/m 2 Superficie totale 2169,28 m 2

Dispersioni, apporti e fabbisogno di energia utile:

Mese	Q _{H,tr} [kWh]	Q _{H,ve} [kWh]	Q _{H,ht} [kWh] _t	Q _{sol} [kWh]	Q _{int} [kWh]	Q _{gn} [kWh]	т [h]	η _{и, н} [-]	Q _{H,nd} [kWh]
Ottobre	3530	1689	5219	7555	2256	9270	65,1	0,551	109
Novembre	9640	4416	14055	9307	3982	12755	65,1	0,880	2829
Dicembre	13169	6071	19241	9108	4115	12764	65,1	0,959	6995
Gennaio	14279	6637	20916	10089	4115	13679	65,1	0,962	7763
Febbraio	11320	5279	16599	9903	3717	12941	65,1	0,927	4608
Marzo	9364	4412	13776	12876	4115	15809	65,1	0,779	1458
Aprile	3135	1584	4719	6057	1991	7255	65,1	0,626	177

Totali 64437 30089 94526 64896 24290 84473 23938

Legenda simboli

Q_{H,tr} Energia dispersa per trasmissione e per extraflusso

Q_{H,ve} Energia dispersa per ventilazione

 $Q_{H,ht}$ Totale energia dispersa = $Q_{H,tr}$ + $Q_{H,ve}$

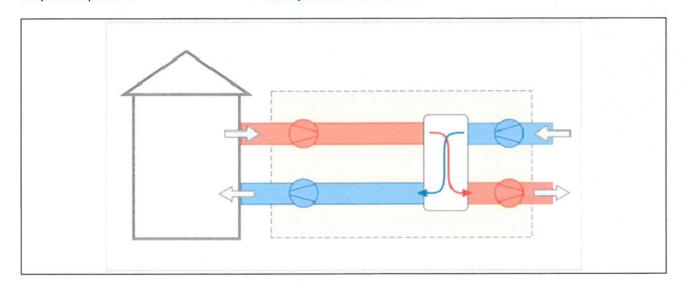
Q_{sol} Apporti solari Q_{int} Apporti interni

 Q_{gn} Totale apporti gratuiti = $Q_{sol} + Q_{int}$

Q_{H,nd} Energia utile

T Costante di tempo

 $\eta_{\text{u, H}}$ Fattore di utilizzazione degli apporti termici

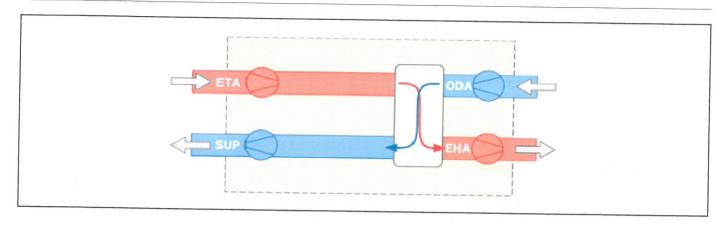

FABBISOGNO DI ENERGIA PRIMARIA secondo UNI/TS 11300-2 e UNI/TS 11300-4

SERVIZIO RISCALDAMENTO (impianto aeraulico)

Zona 1 : Zona 1

Caratteristiche impianto aeraulico:

Tipo di impianto Dispositivi presenti Ventilazione meccanica bilanciata Recuperatore di calore


Dati per il calcolo della ventilazione meccanica effettiva:

Ricambi d'aria a 50 Pa	n ₅₀	1	h ⁻¹
Coefficiente di esposizione al vento	e	0,10	-
Coefficiente di esposizione al vento	f	15,00	-
Fattore di efficienza della regolazione	$FC_{ve,H}$	1,00	-
Ore di funzionamento dell'impianto	hf	8,00	-
Rendimento nominale del recuperatore	ηH_{nom}	0,90	

Portate dei locali

Zona	Nr.	Descrizione locale	Tipologia	q _{ve,sup} [m³/h]	q _{ve,ext} [m³/h]	q _{ve,0} [m ³ /h]
1	1	NEGOZIO	Estrazione + Immissione	2859,74	2859,74	2859,74
1	2	SOGLIATOIO+WC CIECO	Estrazione	0,00	11,13	11,13
1	4	WC DIS.	Estrazione	0,00	5,78	5,77
			Totale	2859,74	2876,65	2876,65

Caratteristiche dei condotti

Condotto di estrazione dagli ambienti (ETA):

Temperatura di estrazione da ambienti	20,0	°C
Potenza elettrica dei ventilatori	0	W
Portata del condotto	2876,65	m ³ /h

Condotto di immissione negli ambienti (SUP):

Temperatura di immissione in ambienti	20,0	°C
Potenza elettrica dei ventilatori	0	W
Portata del condotto	2859,74	m ³ /h

Condotto di aspirazione dell'aria esterna (ODA):

Differenza di temperatura per scambio con il terreno	0,0	°C
Potenza elettrica dei ventilatori	0	W
Portata del condotto	2859,74	m ³ /h

Zona 1 : Zona 1

Modalità di funzionamento	
Circuito Riscaldamento Zona 1	

Modalità di funzionamento dell'impianto:

Continuato

SERVIZIO RISCALDAMENTO (impianto idronico)

Rendimenti stagionali dell'impianto:

Descrizione	Simbolo	Valore	u.m.
Rendimento di emissione	η _{H,e}	97,7	%
Rendimento di regolazione	η _{H,rg}	46,3	%
Rendimento di distribuzione utenza	η _{H,du}	99,0	%
Rendimento di generazione	$\eta_{H,gn}$	195,3	%
Rendimento globale medio stagionale	η _{H,g}	197,3	%

Rendimento di emissione

Dati per circuito

Circuito Riscaldamento Zona 1

%

95,0

Caratteristiche sottosistema di emissione:

Tipo di terminale di erogazione Bocchette in sistemi ad aria calda

Potenza nominale dei corpi scaldanti 77500 W Fabbisogni elettrici 600 W

Caratteristiche sottosistema di regolazione:

Tipo Manuale (solo termostato di caldaia)

Caratteristiche --

Rendimento di regolazione 95,0 %

Caratteristiche sottosistema di distribuzione utenza:

Metodo di calcolo Semplificato

Tipo di impianto Autonomo, edificio condominiale
Posizione impianto Impianto a piano intermedio

Posizione tubazioni -

Isolamento tubazioni Isolamento con spessori conformi alle prescrizioni del

DPR n. 412/93

Numero di piani -

Fattore di correzione

Rendimento di distribuzione utenza

99,0 %

Fabbisogni elettrici

0 W

SOTTOSISTEMA DI GENERAZIONE

Dati generali:

Servizio Riscaldamento
Tipo di generatore Pompa di calore

Metodo di calcolo secondo UNI/TS 11300-4

Marca/Serie/Modello HITACHI RAS 24 FSXNHE

Tipo di pompa di calore Elettrica

Temperatura di disattivazione $\theta_{H,off}$ 20,0 °C (per riscaldamento)

Sorgente fredda Aria esterna

Temperatura di funzionamento (cut-off) minima -25,0 °C

massima 45,0 °C

Sorgente calda Aria per riscaldamento ambienti

Temperatura di funzionamento (cut-off) minima 15,0 °C

massima 25,0 °C

Temperatura della sorgente calda (riscaldamento) 25,0 °C

Prestazioni dichiarate:

Coefficiente di prestazione	COPe	4,1	
Potenza utile	P_{u}	77,50	kW
Potenza elettrica assorbita	P _{ass}	18,95	kW
Temperatura della sorgente fredda	Θ_{f}	7	°C
Temperatura della sorgente calda	θ_{c}	35	°C

Fattori correttivi della pompa di calore:

Fattore di correzione Cd

0,25

Fattore minimo di modulazione Fmin

0,50 -

CR	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0.8	0,9	1.0
Fc	0,75	0,80	0,85	0,90	0,95	1,00	1,00	1,00	1,00	1,00	1.00

Legenda simboli

CR

Fattore di carico macchina della pompa di calore

Fc Fattore correttivo della pompa di calore

Integrazione:

Rendimento di generazione 100,0 %

Tipo combustibile Energia elettrica

Potere calorifico inferiore H_i 1,000
Fattore di conversione f_o 2.174 -

Fabbisogni elettrici:

Potenza elettrica degli ausiliari indipendenti

0 W

Temperatura dell'acqua del generatore di calore:

Generatore di calore a temperatura scorrevole

Tipo di circuito

Collegamento diretto

		GENERAZIONE			
Mese	giorni	θgn,avg [°C]	θgn,flw [°C]	θgn,ret [°C]	
ottobre	17	0,0	0,0	0,0	
novembre	30	0,0	0,0	0,0	
dicembre	31	0,0	0,0	0,0	
gennaio	31	0,0	0,0	0,0	
febbraio	28	0,0	0,0	0,0	
marzo	31	0,0	0,0	0,0	
aprile	15	0,0	0,0	0,0	

Legenda simboli

θgn,flw Temperatura di mandata del generatore di calore

 $\theta_{gn,ret}$ Temperatura di ritorno del generatore di calore

Vettore energetico:

Tipo Energia elettrica

Fattore di conversione in energia primaria (rinnovabile) $f_{p,ren}$ 0,000 - Fattore di conversione in energia primaria (non rinnovabile) $f_{p,nren}$ 2,174 - Fattore di conversione in energia primaria f_p 2,174 -

Fattore di emissione di CO₂ 0,4332 kg_{CO2}/kWh

RISULTATI DI CALCOLO MENSILI

Risultati mensili servizio riscaldamento - impianto idronico

Zona 1 : Zona 1

<u>Dettagli generatore</u>: 1 - Pompa di calore

Mese	99	Q _{H,gn,out} [kWh]	Q _{H,gn,ln} [kWh]	η _{H,gn} [%]	Combustibile [kWh]
gennaio	31	8142	2025	184,9	0
febbraio	28	4449	1058	193,5	0
marzo	31	904	188	221,3	0
aprile	15	59	10	265,3	0
maggio	-	-	-	-	-
giugno	-	-	-	-	-
luglio	-	-	-	-	-
agosto	-	-	-	-	-
settembre	-	-	-	-	-
ottobre	17	26	4	293,6	0
novembre	30	2431	497	224,8	0
dicembre	31	7334	1716	196,5	0

Mese	99	COP [-]
gennaio	31	4,02
febbraio	28	4,21
marzo	31	4,81
aprile	15	5,77
maggio	-	
giugno	-	-
luglio	-	
agosto	17	-
settembre	-	-
ottobre	17	6,38
novembre	30	4,89
dicembre	31	4,27

Legenda simboli

 $\begin{array}{ll} gg & \text{Giorni compresi nel periodo di calcolo per riscaldamento} \\ Q_{\text{H,gn,out}} & \text{Energia termica fornita dal generatore per riscaldamento} \end{array}$

Q_{H,gn,in} Energia termica in ingresso al generatore per riscaldamento

η_{H,gn} Rendimento mensile del generatore Combustibile Consumo mensile di combustibile

COP Coefficiente di effetto utile medio mensile

<u>Dettagli generatore</u>: 1 - Integrazione

Mese	99	Q _{H,gn,out} [kWh]	Q _{H,gn,in} [kWh]	ŋ _{н,gn} [%]	Combustibile [kWh]
gennaio	31	0	0	0,0	0
febbraio	28	0	0	0,0	0
marzo	31	0	0	0,0	0
aprile	15	0	0	0,0	0
maggio	-	-	-	-	-
giugno	-	-	-	-	-
luglio	-	-	-	-	-
agosto	-	-	-	-	
settembre	-	_	-	-	-
ottobre	17	0	0	0,0	0
novembre	30	0	0	0,0	0
dicembre	31	0	0	0,0	0

Mese	99	FC [-]
gennaio	31	0,000
febbraio	28	0,000
marzo	31	0,000
aprile	15	0,000
maggio	-	-
giugno	-	-
luglio	-	-
agosto	-	-
settembre	-	
ottobre	17	0,000
novembre	30	0,000
dicembre	31	0,000

Legenda simboli

99 Giorni compresi nel periodo di calcolo per riscaldamento Q_{H,gn,out} Energia termica fornita dal generatore per riscaldamento

Q_{H,gn,in} Energia termica in ingresso al generatore per riscaldamento

η_{H,gn} Rendimento mensile del generatore Combustibile Consumo mensile di combustibile

FC Fattore di carico

Fabbisogno di energia primaria

Mese	99	Q _{H,gn,in} [kWh]	Q _{H,aux} [kWh]	Qр _н [kWh]
gennaio	31	2025	2055	4468
febbraio	28	1058	1072	2331
marzo	31	188	190	414
aprile	15	10	10	23
maggio	-	-	-	-
giugno	-	-		_
luglio	-	-	-	-
agosto	-	-	-	-
settembre	-	-	-	-
ottobre	17	4	4	9
novembre	30	497	505	1097

TOTALI	183	5499	5580	12131
dicembre	31	1716	1743	3789

Legenda simboli

gg Giorni compresi nel periodo di calcolo per riscaldamento

Q_{H,gn,in} Energia termica totale in ingresso al sottosistema di generazione per riscaldamento

Q_{H,aux} Fabbisogno elettrico totale per riscaldamento Qp_H Fabbisogno di energia primaria per riscaldamento

Zona 1 : Zona 1

Modalità di funzionamento

SERVIZIO ACQUA CALDA SANITARIA

Rendimenti stagionali dell'impianto:

Descrizione	Simbolo	Valore	u.m.
Rendimento di erogazione	η _{w,er}	100,0	%
Rendimento di distribuzione utenza	η _{w,du}	92,6	%
Rendimento di generazione	η _{w,gn}	137,6	%
Rendimento globale medio stagionale	η _{W,g}	127,4	%

Dati per zona

Zona: Zona 1

Fabbisogno giornaliero di acqua sanitaria [1/q]:

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
138	138	138	138	138	138	138	138	138	138	138	138

Categoria DPR 412/93

E.5

Temperatura di erogazione

40,0 °C

Temperatura di alimentazione [°C]

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
12,8	12,8	12,8	12,8	12,8	12,8	12,8	12.8	12.8	12.8	12.8	

Superficie utile

691,32 m²

Caratteristiche sottosistema di erogazione:

Rendimento di erogazione

100,0 %

Caratteristiche sottosistema di distribuzione utenza:

Metodo di calcolo

Semplificato

Sistemi installati dopo l'entrata in vigore della legge 373/76, rete corrente parzialmente in ambiente climatizzato

SOTTOSISTEMA DI GENERAZIONE

Modalità di funzionamento del generatore:

Continuato

24 ore giornaliere

Dati generali:

Servizio

Acqua calda sanitaria

Tipo di generatore

Pompa di calore

Metodo di calcolo secondo UNI/TS 11300-4

Marca/Serie/Modello **Ariston Nuos 80**

Tipo di pompa di calore **Elettrica**

Sorgente fredda Aria interna

0,0 °C Temperatura di funzionamento (cut-off) minima

> massima 40,0 °C

20,0 °C Temperatura della sorgente fredda

Sorgente calda Acqua calda sanitaria

Temperatura di funzionamento (cut-off) minima 15,0 °C

> massima 60,0 °C

Temperatura della sorgente calda (acqua sanitaria) 55,0 °C

Prestazioni dichiarate:

COPe Coefficiente di prestazione 3,4

0,93 kW Potenza utile Pi

Pass Potenza elettrica assorbita 0,27 kW

°C Temperatura della sorgente fredda θ_{f} 20

55 °C Temperatura della sorgente calda θ_c

Fattori correttivi della pompa di calore:

Fattore minimo di modulazione Fmin 0,50 -

CR	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
										1,00	

Legenda simboli

Fattore di carico macchina della pompa di calore CR

Fattore correttivo della pompa di calore Fc

Integrazione:

100,0 % Rendimento di generazione

Tipo combustibile Energia elettrica

Potere calorifico inferiore H_{i} 1,000 Fattore di conversione 2,174

Fabbisogni elettrici:

Potenza elettrica degli ausiliari indipendenti W

Vettore energetico:

Tipo Energia elettrica

Fattore di conversione in energia primaria (rinnovabile) 0,000 $f_{p,ren}$ Fattore di conversione in energia primaria (non rinnovabile) 2,174 $f_{p,nren}$ Fattore di conversione in energia primaria 2,174

Fattore di emissione di CO₂ 0,4332 kg_{CO2}/kWh

RISULTATI DI CALCOLO MENSILI

 f_p

Risultati mensili servizio acqua calda sanitaria

Zona 1 : Zona 1

Dettagli generatore: 1 - Pompa di calore

Mese	99	Qw,gn,out [kWh]	Q _{w,gn,in} [kWh]	ղ _{w,gn} [%]	Combustibile [kWh]
gennaio	31	146	49	137,6	0
febbraio	28	132	44	137,6	0
marzo	31	146	49	137,6	0
aprile	30	141	47	137,6	0
maggio	31	146	49	137,6	0
giugno	30	141	47	137,6	0
luglio	31	146	49	137,6	0
agosto	31	146	49	137,6	0
settembre	30	141	47	137,6	0
ottobre	31	146	49	137,6	0
novembre	30	141	47	137,6	0
dicembre	31	146	49	137,6	0

Mese	99	CR [-]	COP [-]	Pu _m [kW]
gennaio	31	0,211	2,99	0,93
febbraio	28	0,211	2,99	0,93
marzo	31	0,211	2,99	0,93
aprile	30	0,211	2,99	0,93
maggio	31	0,211	2,99	0,93
giugno	30	0,211	2,99	0,93
luglio	31	0,211	2,99	0,93
agosto	31	0,211	2,99	0,93
settembre	30	0,211	2,99	0,93
ottobre	31	0,211	2,99	0,93
novembre	30	0,211	2,99	0,93
dicembre	31	0,211	2,99	0,93

Legenda simboli

99 Giorni compresi nel periodo di calcolo per acqua sanitaria $Q_{W,gn,out}$ Energia termica fornita dal generatore per acqua sanitaria

Qw,gn,in Energia termica in ingresso al generatore per acqua sanitaria

 $\eta_{\text{W,gn}}$ Rendimento mensile del generatore Combustibile Consumo mensile di combustibile

CR Fattore di carico

COP Coefficiente di effetto utile medio mensile

Pu_m Potenza utile mensile

<u>Dettagli generatore</u>: 1 - Integrazione

Mese	99	Qw,gn,out [kWh]	Qw,gn,in [kWh]	ղ _{w,an} [%]	Combustibile [kWh]
gennaio	31	0	0	0,0	0
febbraio	28	0	0	0,0	0
marzo	31	0	0	0,0	0
aprile	30	0	0	0,0	0

maggio	31	0	0	0,0	0
giugno	30	0	0	0,0	0
luglio	31	0	0	0,0	0
agosto	31	0	0	0,0	0
settembre	30	0	0	0,0	0
ottobre	31	0	0	0,0	0
novembre	30	0	0	0,0	0
dicembre	31	0	0	0,0	0

Mese	99	FC [-]
gennaio	31	0,000
febbraio	28	0,000
marzo	31	0,000
aprile	30	0,000
maggio	31	0,000
giugno	30	0,000
luglio	31	0,000
agosto	31	0,000
settembre	30	0,000
ottobre	31	0,000
novembre	30	0,000
dicembre	31	0,000

Legenda simboli

 $\begin{array}{ll} gg & \text{Giorni compresi nel periodo di calcolo per acqua sanitaria} \\ Q_{W,gn,out} & \text{Energia termica fornita dal generatore per acqua sanitaria} \\ Q_{W,gn,in} & \text{Energia termica in ingresso al generatore per acqua sanitaria} \end{array}$

 $\eta_{W,gn}$ Rendimento mensile del generatore Combustibile Consumo mensile di combustibile

FC Fattore di carico

Fabbisogno di energia primaria

Mese	gg	Qw,gn,in [kWh]	Q _{w,aux} [kWh]	Qp _w [kWh]
gennaio	31	49	49	106
febbraio	28	44	44	96
marzo	31	49	49	106
aprile	30	47	47	103
maggio	31	49	49	106
giugno	30	47	47	103
luglio	31	49	49	106
agosto	31	49	49	106
settembre	30	47	47	103
ottobre	31	49	49	106
novembre	30	47	47	103
dicembre	31	49	49	106
TOTALI	365	575	575	1251

Legenda simboli

gg Giorni compresi nel periodo di calcolo per acqua sanitaria

Q_{W,gn,in} Energia termica totale in ingresso al sottosistema di generazione per acqua sanitaria

Q_{W,aux} Fabbisogno elettrico totale per acqua sanitaria

 $Qp_{W} \\$

Fabbisogno di energia primaria per acqua sanitaria